Ecco cosa ccadde. Il 25 aprile 1986 era programmato lo spegnimento del reattore numero 4 per normali operazioni di manutenzione. Si volle approfittare di questa prevista fermata per eseguire un test sui sistemi di sicurezza. Il test intendeva valutare la capacità del gruppo turbine/alternatore di generare elettricità sufficiente per alimentare i sistemi di sicurezza e di raffreddamento anche in assenza di produzione di vapore dal reattore nella primissima fase del transitorio.


In particolare l'energia cinetica della rotazione per inerzia delle turbine sarebbe servita ad alimentare le pompe dell'acqua refrigerante del reattore, simulando uno scenario di improvvisa mancanza dell'alimentazione elettrica esterna. I reattori come quello di Černobyl (ma normalmente anche le altre tipologie di impianto) hanno dei generatori diesel di emergenza a questo scopo, che però non sono avviabili istantaneamente e richiedono circa 40 secondi perché entrino in funzione. L'obiettivo del test era sfruttare l'energia cinetica residua nelle turbine ancora in rotazione, ma isolate dal reattore, per generare energia elettrica che alimentasse le pompe dell'acqua per il tempo necessario all'avvio dei generatori diesel. Il test era già stato condotto su un altro reattore, ma con tutti i sistemi di sicurezza attivi e in condizioni operative differenti, ed aveva dato esito negativo, cioè l'energia elettrica prodotta sfruttando la sola inerzia delle turbine era insufficiente ad alimentare le pompe. Erano state apportate quindi delle migliorie alle turbine, che richiedevano un nuovo test di verifica.

La potenza del reattore numero 4 doveva essere ridotta, dai nominali 3200 MW termici a circa 1000 MW termici, per condurre il test in sicurezza. Si cominciò a ridurre gradualmente la potenza fino al 50% della nominale, ma il test fu interrotto da un imprevisto: una centrale elettrica regionale ebbe un guasto e fu richiesto di non ridurre ulteriormente la fornitura di energia elettrica fino a quando la centrale guasta non fosse stata ripristinata, cosa che avvenne dopo circa 9 ore.


Fu dunque fissato un nuovo orario per il test, l'una di notte. Questo ebbe gravi conseguenze; infatti, mentre gli operai del turno di giorno erano stati ben istruiti e preparati alle procedure del test, il turno di notte avrebbe solamente dovuto controllare i sistemi basilari di raffreddamento in una centrale essenzialmente spenta; nessuno fra gli operatori del turno di notte aveva una chiara idea di ciò in cui consisteva la prova né era addestrato a condurla. Inoltre, la squadra di ingegneri elettrici che avrebbe dovuto supervisionare le operazioni era esausta e poco lucida per la lunga attesa.
L'idea stessa di un incidente nucleare era peraltro inconcepibile per gli operatori che, si può dire, avevano "troppa fiducia" nel reattore, e non si fecero scrupoli a disabilitare i dispositivi di sicurezza e correre dei rischi non necessari. Infine, durante la notte non vi era in sala controllo un ingegnere con piena conoscenze di tutte le caratteristiche specifiche di questa tipologia di reattore nucleare.

Per motivi non chiariti, il responsabile di turno dell'operatività del reattore commise un errore e introdusse le barre di controllo troppo in profondità, causando conseguentemente un crollo della potenza oltre il previsto, raggiungendo il livello bassissimo di soli 30 MW termici. Intervenne quindi un effetto di feedback dovuto alla produzione di xeno-135 nella fase di bassa potenza del reattore. Normalmente lo xeno-135, un assorbitore di neutroni che si crea durante il funzionamento del reattore come prodotto di fissione primario (e dal decadimento dello tellurio-135), è in una concentrazione di equilibrio proporzionale alla potenza del nocciolo (o meglio al flusso neutronico termico) e tende invece ad aumentare in quantità (e quindi nella capacità di assorbimento neutronico) nella prima fase di riduzione della potenza per poi, con la prevalenza del decadimento rispetto alla sua produzione, a scomparire. Come conseguenza del calo della potenza, la concentrazione di xeno-135 aumentò considerevolmente e insieme quindi all'assorbimento dei neutroni, facendo crollare ulteriormente la potenza generata e creando allo stesso tempo il pericoloso effetto di mascherare la reale reattività del nucleo (che si sarebbe successivamente rapidamente manifestata quando la concentrazione di xeno avesse cominciato a diminuire).

Sebbene il calo di potenza fosse vicino al massimo ammesso dalle norme di sicurezza (si ricorda che era nota l'instabilità del reattore alle basse potenze), si decise di non eseguire lo spegnimento completo, e di continuare l'esperimento. Probabilmente gli operatori non erano al corrente del comportamento dello xeno-135, e pensavano che il crollo della potenza fosse dovuto al malfunzionamento dei regolatori automatici di potenza. Alle 01:05 del 26 aprile, come previsto dalla pianificazione del test, furono attivate delle pompe di alimentazione extra, ma la quantità di acqua immessa superò alle 01:19 i limiti di sicurezza, con l'effetto di ridurre ancor di più la potenza del reattore per le proprietà avvelenanti dell'acqua leggera. Con una manovra di correzione contraria alle procedure corrette, per accelerare la risalita della potenza e quindi affrettare la conclusione dell'esperimento, furono estratte tutte le barre di controllo eccetto 7, incluse molte barre di controllo manuali, ben oltre i limiti delle norme di sicurezza che prevedono di lasciare almeno 30 barre di controllo inserite. La potenza fu così fatta risalire gradualmente fino 200 MW termici (comunque meno di un terzo del minimo richiesto).

L'azione di rimozione delle barre di controllo manuale aveva portato il reattore in una situazione molto instabile e pericolosa, all'insaputa degli operatori. La reale attività del reattore era mascherata dall'eccesso di xeno-135 e dell'acqua di raffreddamento, e non era riportata in alcun modo sui pannelli di controllo; nessuno degli operatori in sala controllo era conscio del pericolo. Come se non bastasse, l'aumento di acqua oltre i limiti di sicurezza aveva portato ad una diminuzione critica della produzione di vapore e ad altri cambiamenti di parametri che normalmente avrebbero causato lo spegnimento automatico del reattore; tuttavia, anche lo spegnimento automatico era stato disabilitato manualmente dagli operatori. Furono disattivati anche diversi altri sistemi automatici (ad es. il raffreddamento di emergenza del nocciolo, la riduzione di emergenza della potenza, e via dicendo).

Alle 01:23:04 si iniziò l'esperimento vero e proprio. Venne staccata l'alimentazione alle pompe dell'acqua, che continuarono a girare per inerzia. La turbina fu scollegata dal reattore; con la diminuzione del flusso dell'acqua e il conseguente surriscaldamento, i tubi si riempirono di sacche di vapore. Il reattore RBMK, nelle delicate condizioni in cui venne portato, ha un coefficiente di vuoto molto positivo e quindi la reazione crebbe rapidamente al ridursi della capacità di assorbimento di neutroni da parte dell'acqua di raffreddamento, diventando sempre meno stabile e sempre più pericoloso. Il coefficiente di vuoto positivo crea così un circolo vizioso: aumentando la temperatura dell'acqua aumentano le sacche di vapore che accelerano la reazione creando ancora più calore che a sua volta fa aumentare ancora la temperatura dell'acqua.

Alle 01:23:40 gli operatori azionarono il tasto AZ-5 (Rapid Emergency Defense 5) che esegue il cosiddetto "SCRAM", cioè l'arresto di emergenza del reattore che inserisce tutte le barre di controllo incluse quelle manuali incautamente estratte in precedenza. Non è chiaro se l'azione fu eseguita come misura di emergenza, o semplicemente come normale procedura di spegnimento a conclusione dell'esperimento, giacché il reattore doveva essere spento comunque per la manutenzione programmata. Di solito l'operazione di SCRAM viene ordinata a seguito di un rapido ed inatteso aumento di potenza. D'altro canto, Anatolij Djatlov, capo ingegnere dell'impianto di Černobyl' al tempo dell'incidente scrisse:


« Prima delle 01:23:40 il sistema di controllo centralizzato [...] non registrò alcun cambio dei parametri da poter giustificare lo “SCRAM”. La commissione [...] raccogliendo e analizzando una grande quantità di dati, come indicato nel rapporto, non ha determinato il motivo per cui fu ordinato lo SCRAM. Non c'era necessità di cercare il motivo. Il reattore veniva semplicemente spento al termine dell'esperimento.»


A causa della lenta velocità del meccanismo d'inserimento delle barre di controllo (che richiede 18-20 secondi per il completamento) e dell'estremità (estensori) in grafite delle barre, lo SCRAM causò un rapido aumento della reazione. Infatti nei primi secondi le estremità in grafite delle barre rimpiazzarono nel reattore un uguale volume di acqua di raffreddamento. Ora, l'acqua refrigerante assorbe neutroni mentre la grafite funge da moderatore portando i neutroni alla velocità ottimale per la reazione. La conseguenza fu che all'inizio dell'inserimento delle barre la reazione venne accelerata improvvisamente producendo un aumento enorme di potenza nel reattore. L'improvviso aumento di temperatura deformò i canali delle barre di controllo che stavano scendendo, al punto che le barre si bloccarono a circa un terzo del loro cammino, e quindi non furono più in grado di arrestare una reazione in cui l'aumento di potenza diveniva incontrollato a causa del coefficiente di vuoto positivo.

Così, dopo soli sette secondi dall'inizio dell'inserimento delle barre - alle 01:23:47 - la potenza del reattore raggiunse il valore di 30 GW termici, dieci volte la potenza normale. Le barre di combustibile iniziarono a fratturarsi bloccando le barre di controllo con la grafite all'interno, quindi il combustibile cominciò a fondere; inoltre, alle alte temperature raggiunte, l'acqua all'interno del reattore reagì chimicamente con lo zirconio, di cui sono in genere fatte le tubazioni degli impianti nucleari, dissociandosi e producendo grandi volumi di idrogeno gassoso.

La pressione del vapore aumentò fino a causare la rottura delle tubazioni e causò l'allagamento del basamento. Quando il combustibile fuso raggiunse l'acqua di raffreddamento, avvenne la prima esplosione di vapore (alle 1:24); dall'interno del nocciolo il vapore risalì lungo i canali e generò un'enorme esplosione che fece saltare la piastra superiore del nocciolo. Tale piastra, in acciaio e cemento, pesante circa 1000 tonnellate, fu proiettata in aria con le tubazioni dell'impianto di raffreddamento e le barre di controllo, e ricadde verticalmente sull'apertura lasciando il reattore scoperto. La seconda esplosione fu causata dalla reazione tra grafite incandescente e l'idrogeno gassoso.

Ci sono alcune controversie sulla sequenza degli eventi dopo le ore 01:22:30 a causa di incongruenze fra i testimoni oculari e le registrazioni. La versione comunemente accettata è quella descritta sopra. Secondo questa ricostruzione la prima esplosione avvenne intorno alle 01:23:44, sette secondi dopo il comando di SCRAM. A complicare la ricostruzione alle ore 01:23:47 fu registrato, nell'area di Černobyl', un debole evento sismico di magnitudo 2,5. Inoltre il tasto di SCRAM fu premuto più di una volta, ma la persona che l'ha fatto materialmente è deceduta due settimane dopo l'incidente per l'esposizione prolungata alle radiazioni. Talvolta però è stato detto che l'esplosione avvenne prima o immediatamente dopo lo SCRAM (questa era la versione di lavoro della commissione sovietica di studio sull'incidente). La distinzione è importante poiché, se il reattore fosse esploso diversi secondi dopo lo SCRAM come risulta dall'ultima ricostruzione accertata, il disastro sarebbe da attribuirsi principalmente al progetto delle barre di controllo. Se l'esplosione fosse invece da anticipare allo SCRAM, la causa sarebbe da attribuire maggiormente alle azioni degli operatori. Nel 1986 l'AIEA aveva indicato negli operatori la causa principale dell'incidente. Nel gennaio 1993 l'AIEA ha tuttavia rivisto l'analisi dell'incidente attribuendo la causa principale al progetto del reattore e non agli operatori.

Fu distrutto il solaio, gran parte del tetto dell'edificio crollò e fu danneggiato il tetto dell'adiacente locale turbine; i frammenti di grafite si sparsero nella sala principale e intorno all'edificio. Il nocciolo del reattore si trovò così scoperchiato e all'aperto, a contatto con l'atmosfera. Dalle esplosioni si sollevò un'alta colonna di vapore ionizzato. Al contatto con l'ossigeno dell'aria, per le altissime temperature dei materiali del nocciolo, nel reattore divampò un violento incendio di grafite che coinvolse i materiali bituminosi di copertura del tetto e altre sostanze chimiche presenti. Il tetto del reattore, infatti, era stato costruito facendo uso di bitume infiammabile, e i pezzi proiettati sul tetto del reattore adiacente causarono almeno altri 5 incendi. Questo incendio contribuì in misura enorme alla diffusione di materiali radioattivi nell'atmosfera. Un effetto secondario dello scoperchiamento del reattore, d'altra parte, fu che il movimento d'aria contribuì al raffreddamento del nocciolo liquefatto.

26.12.2011-Chernobyl

L'impianto, a causa della sua doppia natura civile e militare, era stato costruito con un sistema automatico di sostituzione delle barre di combustibile (indispensabile per la produzione di plutonio che esige cicli di sostituzione delle barre di pochi giorni) e questa scelta aveva determinato l'impossibilità di costruire un contenimento in cemento armato abbastanza alto poiché il reattore misurava 30 metri di altezza ed almeno altrettanti erano necessari sopra di esso per il robot colonnare di sostituzione delle barre, lunghe quanto il reattore stesso, infine doveva aggiungersi lo spazio per la gru destinata a manovrare la colonna robotizzata. A causa dell'altezza complessiva di circa 70 metri dell'impianto, del tutto inusuale per le centrali nucleari occidentali ma possibile nell'Ex Unione Sovietica, si decise quindi di realizzare solo un contenimento parziale, che escludeva la sommità del reattore. Questa scelta progettuale ha consentito la dispersione dei contaminanti radioattivi nell'atmosfera.

L'articolo completo è qui:

http://it.wikipedia.org/wiki/Disastro_di_%C4%8Cernobyl%27

Allegati:
Scarica questo file (Disastro di Cernobyl.pdf)Disastro di Cernobyl.pdf637 kB